
A CLASS OF INTEGRAL TRANSFORMATIONS
FOR THE GENERALIZED EQUATION
OF NONSTATIONARY HEAT CONDUCTION
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Integral transformations for finding analytical solutions of the boundary-value problems of nonstationary heat
conduction for the generalized equation of transfer in an infinite region bounded on the inside by a plane,
cylindrical, or spherical surface have been constructed.

The method of integral transformations developed by A. V. Luikov in [1] in solving boundary-value problems
of nonstationary heat conduction in the regions of canonical type (plate, cylinder, sphere) has in subsequent years un-
dergone a further development with respect to its theory [2, 3] and application [4–6]. The indicated method is indis-
pensable in finding solutions of the classical linear boundary-value problems of transfer with inhomogeneities of
general type in both the basic equation and boundary-value conditions and in the presence of basic functional relations
of the method — determination of the transformation, reversion formula, image of the Laplace operator — all calcu-
lations are reduced to simple algorithmic transformations. Despite the results achieved in this field, a number of prob-
lems remain open and need further consideration. One of them is the construction of integral transformations for the
generalized equation of nonstationary heat conduction in an infinite region bounded on the inside by a plane, cylindri-
cal, or spherical surface. We speak of an equation of the form

∂T

∂t
 = a 





∂2
T

∂x
2  + 

2m + 1

x
 
∂T

∂x





(1)

in the region with G = px > x0q, t > 0 on the boundary of which one of the following conditions is prescribed:
temperature heating

T (x, t)x=x0
 = ϕ (t) ,   t > 0 , (2)

thermal heating

∂T (x, t)
∂x



x=x0

 = (1 ⁄ λt) ϕ (t) ,   t > 0 , (3)

heating by a medium

∂T (x, t)
∂x



x=x0

 = h 

T (x, t)x=x0

 − ϕ (t)

 ,   t > 0 , (4)

as well as

T (x, t) < + ∞ ,   x ≥ x0 ,   t ≥ 0 . (5)
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At m = 0 the region is bounded on the inside by a cylindrical surface, at m = 1 ⁄ 2 — by a spherical one,
and at m = −1 ⁄ 2 — by a plane one. As will be shown below, the developed approach admits in (1), on the right, the
presence of the heat source function F(x, t) ⁄ (cρ), inhomogeneous initial condition T(x, 0) = Φ0(x), x ≥ x0, as well as
of the dependences of the thermal diffusivity and thermal conductivity coefficients on time a = a(t), λ = λt(t), where
a(t), λt(t) are the nonnegative continuous functions in the region t 2 [0, ∞).

In further considerations we will use the theory of the singular Sturm–Liouville problem over a semi-infinite
stretch [2, 3], the foundations of which will be considered in application to (1)–(4), thus extending the theory of [2, 3]
to the cases studied.

Let L B [q(x) − d2 ⁄ dx2] be the linear operator applied to the function v(x), where q(x) is the given continuous
function in the region G = [x0, ∞). Let us denote by L(2)[x0, ∞) the class of functions with the square of the module
integrated over [x0, ∞). We will consider the problem

L [v (x)] = λv (x, λ) ,   x > x0 , (6)

α1v′ (x0, λ) − β1v (x0, λ) = 0 . (7)

Let λ be a certain fixed complex number which is not a real one. The operator L has the following important
property: if all the solutions of Eq. (6) belong to the class L(2)[x0, ∞) at a certain complex value of λ, then they be-
long to that class also at all complex λ values.

Let ψ(x, λ) and χ(x, λ) be the solutions of Eq. (6) with the boundary conditions

ψ (x0, λ) = α1 ,   ψ′ (x0, λ) = β1 , (8)

χ (x0, λ) = α2 ,   χ′ (x0, λ) = − β2 , (9)

that satisfy the equality

α1β2 + α2β1 = 1 ,   αi
2
 + βi

2
 > 0 ,   i = 1, 2 . (10)

We note that condition (10) in the approach expounded is of fundamental importance. The solutions ψ and
χ are linearly independent, since their Wronskian at the point x0 is equal to

W (χ, ψ)x=x0
 = 1 (11)

and therefore differs from zero on the entire interval [x0, ∞). In this case, the function ψ(x, λ) satisfies the boundary
condition (7) for Eq. (1), i.e.,

α1ψ′ (x0, λ) − β1ψ (x0, λ) = 0 , (12)

so that any solution v(x, λ) of Eq. (1) that satisfies condition (2) differs from ψ(x, λ) only by a numerical factor.
From the linear independence of χ and ψ it also follows that accurate to within the factor any solution of Eq. (1) dif-
ferent from ψ can be represented in the form

v (x, λ) + χ (x, λ) + m∞ (λ) ψ (x, λ) , (13)

where m∞(λ) is a certain complex number which plays an important role in the theory of construction of the unknown
integral transformations on the basis of the expansion in eigenfunctions of the singular Sturm–Liouville problem on the
semi-infinite interval. We will formulate the basic theory of expansion. Let f(x) 2 L(2)[x0, ∞) be continuous and there
exist the following function:
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f
_
 (λ) = ∫ 

x0

∞

f (x) ψ (x, λ) dx ,
(14)

where ψ(x, λ) is the solution of Eq. (6) with boundary conditions (8). Then

f (x) = ∫ 
−∞

+∞

f
_
 (λ) ψ (x, λ) dσ (λ) , (15)

where integration is carried out along the real axis. It is assumed that the integral in (15) converges absolutely and on
each finite interval uniformly over x. Relations (14) and (15) establish the possibility of expansion of any function f(x)
2 L(2)[x0, ∞) into eigenfunctions of the singular Sturm–Liouville problem on a semi-infinite interval. They can be writ-
ten in the form

f (x) = ∫ 
−∞

+∞

ψ (x, λ) dσ (λ) ∫ 
x0

∞

ψ (ξ, λ) f (ξ) dξ .
(16)

The functions σ(λ) and m∞(λ) (according to the terminology adopted, these are the spectral and limiting func-
tion, respectively [2, 3]) are closely connected: one can yield the other:

dσ (λ) = 
1
π

 Im [m∞ (λ)] dλ .
(17)

In the presence of an infinitely removed point in the G region the value of m∞(λ) is determined by an unique
technique based on the existence of the single linearly independent solution of Eq. (6) belonging to the class
L(2)[x0, ∞). Indeed, as shown below, the spectral problem for (1)–(5) leads to the case where ψ(x, λ) 2/  L(2)[x0, ∞);
however, when Im (λ) ≠ 0, there exists the solution of Eq. (6) of class L(2)[x0, ∞) that is linearly independent of ψ,
namely,

χ (x, λ) + m∞ (λ) ψ (x, λ) = v (x, λ) 2 L
(2)

 [x0, ∞) . (18)

Two linearly independent solutions of class L(2)[x0, ∞) cannot exist, because then all the solutions of Eq. (6)
would belong to L(2)[x0, ∞), which contradicts the statement that ψ(x, λ) 2/  L(2)[x0, ∞). Thus, in the considered region
G Eq. (6) at Im (λ) ≠ 0 has one and only one linearly independent solution of class L(2)[x0, ∞), namely, v(x, λ) = χ(x,
λ) + m∞(λ)ψ(x, λ). The latter means that all the solutions of Eq. (6) occurring in L(2)[x0, ∞) are proportional to Eq.
(18). This fact is used further to find the function m∞(λ).

We will consider in more detail the procedure of constructing an integral transformation for case (2) in solv-
ing the first boundary-value problem of nonstationary heat conduction for Eq. (1) (with possible additional inhomo-
geneities in the initial statement of the problem).

The corresponding spectral problem has the form

d
2Θ

dx
2  + 

2m + 1

x
 
dΘ

dx
 + s

2Θ = 0 ,   x > x0 , (19)

Θ (x, s)x=x0
 = 0 , (20)

Θ (x, s) < + ∞ ,   x ≥ x0 . (21)
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With the aid of the substitution of

Θ (x, s) = x
−(m+1 ⁄ 2) v (x, λ) (22)

Eq. (19) is reduced to the form of Eq. (6):

d
2
v

dx
2
 + 



λ − 

m
2
 − 1 ⁄ 4

x
2




 v = 0 ,   λ = s

2
 ,   x > x0 ,

(23)

with the boundary condition

v (x0, λ) = 0 , (24)

whence, according to Eq. (7),

α1 = 0 ,   β1 = 1 . (25)

The expressions √x  Jm(sx) and √x  Ym(sx) are linearly independent solutions of Eq. (23), where s is one of the
values of √λ  (in what follows s means the value for which −π ⁄ 2 < arg s < π ⁄ 2). The functions χ(x, λ) and ψ(x, λ)
considered above — the solutions of Eq. (23) — must satisfy the conditions

ψ (x0, λ) = 0 ,   ψ′ (x0, λ) = 1 ,   χ (x0, λ) = 1 ,   χ′ (x0, λ) = 0

and must be expressed in terms of the fundamental system of the solutions of Eq. (23) in the following way:

ψ (x, λ) = − 
2
π

 √x0x  Jm (sx) Ym (sx0) − Ym (sx) Jm (sx0) ,
(26)

χ (x, λ) = 
2
π

 s √x0x  Jm (sx) Ym
′  (sx0) − Ym (sx) Jm

′  (sx0) − 
ψ (x, λ)

2x0
 .

(27)

It should be emphasized that the function ψ(x, λ) is connected with the unknown function Θ(x, λ) — the ker-
nel of the subsequent integral transformation — by relation (22):

Θ (x, s) = x
−(m+1 ⁄ 2) ψ (x, λ) . (28)

We will calculate the function m∞(λ). Along with the above-indicated fundamental solutions of Eq. (23), among the
particular solutions of this equation there are also √x  Hm

(1)(sx) and √x  Hm
(2)(sx), where Hm

(1)(z) and Hm
(2)(z) are Hankel

functions of the 1st and 2nd kind. From the asymptotic representations for the Hankel functions [2] it follows that
when Im λ > 0,

√x  Hm
(1)

 (sx) 2 L
(2)

 [x0; ∞) ,     √x  Hm
(2)

 (sx) 2/  L
(2)

 [x0; ∞) . (29)

Since in the region G for Eq. (23) only one linearly independent solution of the class L(2)[x0, ∞) can exist that
has the form of Eq. (18), and with account for Eq. (29), √x  Hm

(1)(sx) is also such a solution, ν(x, λ) may differ from
√x  Hm

(1)(sx) only by the constant factor

χ (x, λ) + m∞ (λ) ψ (x, λ) = A√x  Hν
(1)

 (sx) = A√x  Jm (sx) + iYm (sx) ,
(30)

where A is a constant. Having substituted expressionism (26) and (27) into Eq. (30) and equated the coefficients at
Jm(sx) and Ym(sx), we obtain
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m∞ (λ) = s 
√x  Hm

′(1) (sx0)

√x  Hm
(1)

 (sx0)
 + 

1

2a
 ,   s = √λ  .

(31)

Proceeding from the properties of the Bessel functions, we can see that m∞(λ) is an even function of √λ , i.e.,
it is independent of the choice of the sign of √λ  and, consequently, is the single-values function s = √λ , where the
value of √λ  is taken with a nonnegative real part. With the aid of Eq. (31) we can calculate Im [m∞(λ)]:

Im [m∞ (λ)] + Im 



s 
√x  Hm

′(1) (sx0)

√x  Hm
(1)

 (sx0)




 = Im 




s 

Jm′  (sx0) + iYm′  (sx0)

Jm (sx0) + iYm (sx0)




 .

(32)

After transformations with the use of the well-known properties of the Bessel functions, we find

Im [m∞ (λ)] = 
2

πx0

 
1

Jm
2

 (sx0) + Ym
2

 (sx0)
 ,   s, λ ≥ 0 ,   s = √λ  ,

from which it follows that on the half-axis λ ≥ 0 the function Im [m∞(λ)] does not have singularities (the zeroes of the
function Jm(z) and those of Ym(z) do not coincide) and the spectral function σ(λ) at λ > 0 is continuous. When λ < 0,
the argument sx0 = x0√λ  is purely imaginary. Using the equality

Hm
(1)

 (z) = 
2
πi

 exp 



− 
πm
2

 i



 Km 



z
i



 ,

where Kν(z) is the Macdonald function, we transform relation (32) as

Im [m∞ (λ)] = Im 



√λ  

Km′  (√λ  x0)
Km (√λ  x0)




 ,   λ < 0 . (33)

The Macdonald function Km(z) is real and positive at positive z, therefore the function on the right behind the symbol
Im in Eq. (33) is real and does not have singularities, meaning that in (16) dσ(λ) = 0 when λ < 0. Thus, on the basis
of Eqs. (17) and (33) we have

dσ (λ) = 
4

π2
x0

 
sds

Jm
2

 (sx0) + Ym
2

 (sx0)
 ,   λ = s

2
 > 0 . (34)

Now, with account for relations (14)–(16), (26), (28), and (34), after simple transformations, we arrive at the
sought integral transformation in solving the boundary-value problem of nonstationary heat conduction for Eq. (1) with
boundary conditions of the first kind (2). We will write out successively all the necessary relations: the integral trans-
formation of the function T(x, t) in the region x > x0:

T
__

 (s, t) = ∫ 
x0

∞

Θ (x, s) T (x, t) x2m+1
 dx ; 

(35)

the kernel of the integral transformation

Θ (x, s) = x
−m

 [Jm (sx) Ym (sx0) − Ym (sx) Jm (sx0)] ;
(36)

the image of the operator
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∆T (x, t) = 
∂2

T

∂x
2  + 

2m + 1

x
 
∂T

∂x
 = 

1

x
2m+1

 
∂

∂x
 



x

2m+1
 
∂T

∂x




 ,

  ∫ 
x0

∞

Θ (x, s) ∆T (x, t) x2m+1
 dx = − 

2x0
m

π
 T (x, t)x=x0

 − s
2
T
__

 (x, t) ; (37)

the conversion formula

T (x, t) = ∫ 
0

∞
Θ (x, s) T

__
 (s, t)

Jm
2

 (sx0) + Ym
2

 (sx0)
 sds .

(38)

We will consider the following illustrative example. The solution of the problem

∂T

∂t
 = a 





∂2
T

∂r
2  + 

1

r
 
∂T

∂r




 ,   r > r0 ,   t > 0 , (39)

T (r, t)t=0 = 0 ,   r ≥ r0 , (40)

T (r, t)r=r0
 = T0 ,   t > 0 ,   T (r, t) < + ∞ ,   r ≥ r0 ,   t ≥ 0 , (41)

obtained with the aid of Eqs. (35)–(38), at m = 0 has the form

T (r, t) = T0 + 
2T0

π
 ∫ 
0

∞

exp (− as
2
t) 

J0 (sr) Y0 (sr0) − Y0 (sr) J0 (sr0)

s [J0
2
 (sr0) + Y0

2
 (sr0)]

 ds .

The operational solution of this problem (according to Laplace):

T
__

 (r, p) = T0 
K0 √p ⁄ (ar)
K0 √p ⁄ (ar0)

is associated with cumbersome calculations in transition to the inverted transform. For the boundary conditions of the
2nd kind, Eq. (3), in the spectral problem (19)–(21) the boundary condition (20) is replaced by the condition

dΘ (x, s)
dx



x=x0

 = 0 . (42)

The function v(x, λ), connected with Θ(x, s) by relation (22), satisfies Eq. (23) with the condition

v′ (x0, λ) − 
m + 1 ⁄ 2

x0
 v (x0, λ) = 0 .

The functions χ(x, λ) and ψ(x, λ) satisfy the conditions ψ(x0, λ) = 1, ψ′(x0, λ) = (m + 1 ⁄ 2)x0, χ(x0, λ) = 0,
χ′(x0, λ) = −1 and have the form

ψ (x, λ) = − 
2
π

 s √xx0 [Jm (sx) Ym+1 (sx0) − Ym (sx) Jm+1 (sx0)] ,
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χ (x, λ) = 
2
π

 √xx0  [Jm (sx) Ym (sx0) − Ym (sx) Jm (sx0)] .

All the remaining considerations are repeated analogously. We will present the final results: the integral transformation

T
__

 (s, t) = ∫ 
x0

∞

Θ (x, s) T (x, t) x2m+1
 dx ;

(43)

the kernel of the integral transformation

Θ (x, s) = x
−m

 [Jm (sx) Ym+1 (sx0) − Ym (sx) Jm+1 (sx0)] ; (44)

the image of the operator ∆T(x, t)

  ∫ 
x0

∞

Θ (x, s) ∆T (x, t) x2m+1
 dx = 

2x0
m

πs
 
∂T (x, t)

∂x



x=x0

 − s
2
T
__

 (s, t) ;
(45)

the conversion formula

T (x, t) = ∫ 
0

∞
Θ (x, s) T

__
 (s, t)

Jm+1
2

 (sx0) + Ym+1
2

 (sx0)
 sds . (46)

As the illustration of relations (43)–(46) we will write the solution of problem (39)–(41), but with the bound-
ary condition of the 2nd kind:

∂T (x, t)
∂x



x=x0

 = − 
1
λt

 q ,   t > 0 . (47)

Assuming in (43)–(46) that m = 0, we find

T (r, t) = − 
2q

πλt

 ∫ 
0

∞
[1 − exp (− as

2
t)] [J0 (sr) Y1 (sr0) − Y0 (sr) J1 (sr0)]

s
2
 [J1

2
 (sr0) + Y1

2
 (sr0)]

 ds . (48)

The operational solution of the second boundary-value problem (39)–(40), (42) has the form

T
__

 (r, p) = 
q

λt
 

K0 √p ⁄ (ar)
p ⁄ √p ⁄ a  K1 √p ⁄ (ar0)

and it is also connected with prolonged transformation in transition to the inverted transform.
For the boundary conditions of the 3rd kind (4) in the spectral problem (19)–(21) the boundary condition (20)

is replaced by the condition





dΘ (x, s)
dx

 − hΘ (x, s)






x=x0

 = 0 . (49)

The function v(x, λ), connected with Θ(x, λ) by relation (22) satisfies Eq. (23) with the condition
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v′ (x0, λ) − 




m + 1 ⁄ 2
x0

 − h



 v (x0, λ) = 0 ,

and the functions χ(x, λ) and ψ(x, λ) satisfy the conditions ψ(x0, λ) = 1, ψ′(x0, λ) = (m + 1 ⁄ 2) ⁄ x0 + h, χ(x0, λ) = 0,
χ′(x0, λ) = −1 and have the form

ψ (x, λ) = − 
2
π

 s √xx0  [Jm (sx) Ym+1 (sx0) − Ym (sx) Jm+1 (sx0)] − hχ (x, λ) ,

χ (x, λ) = − 
2
π

 √xx0  [Jm (sx) Ym (sx0) − Ym (sx) Jm (sx0)] .

Further, all the considerations, just as in the case of Eq. (20), are repeated analogously. We will write out the
final results: the integral transformation

T
__

 (s, t) = ∫ 
x0

∞

Θ (x, s) T (x, t) x2m+1
 dx ; (50)

the kernel of the integral transformation

Θ (x, s) = x
−m

 



[Jm (sx) Ym+1 (sx0) − Ym (sx) Jm+1 (sx0)] + 

h
s
 [Jm (sx) Ym (sx0) − Y

.
m (sx) Jm (sx0)]




 ; (51)

the transformation of the operator ∆T(x, t)

  ∫ 
x0

∞

Θ (x, s) ∆T (x, t) x2m+1
 dx = 

2x0
m

πs
 




∂T (x, t)
∂x

 − hT (x, t)






x=x0

 − s
2
T
__

 (s, t) ; (52)

the conversion formula

T (x, t) = ∫ 
0

∞
θ (x, s) T

__
 (s, t)

Jm+1
2

 (sx0) + Ym+1
2

 (sx0)
 sds . (53)

The transformations obtained are applicable for finding analytical solutions of a large number of boundary-
value problems of nonstationary and stationary transfer in Cartesian, cylindrical, and spherical coordinate systems in an
infinite region bounded on the inside by corresponding surfaces, and in contrast to the operational method — the basic
approach in studying such kind of cases — lead rather rapidly to the goal with respect to the standard scheme re-
flected in the relations given.

NOTATION

a, thermal diffusivity; A, constant; Hm
(1)(z), Hankel function of the 1st kind; Hm

(2)(z), Hankel function of the
2nd kind; h, relative coefficient of heat transfer; Jm, Bessel function of the 1st kind; i, imaginary unit; L(2), class of
functions; L, operator; p, parameter in the Laplace transformation; r, polar radius; r0, boundary value of the polar ra-
dius; s, component of the argument; t, time; T, temperature; T0, boundary temperature; v, function; x, z, arguments;
x0, boundary value of the argument; α1, α2, β1, and β2, coefficients; ∆, Laplace operator; λ, argument; λt, thermal
conductivity; χ(x, λ) and ψ(x, λ), functions.
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